How I Built a Zillow Scraper to Extract Real Estate Data at Scale

Have you ever wanted to extract real estate data like price, address, or the number of bedrooms directly from Zillow? In this post, I’ll walk you through how I built a scraper that does exactly that—starting from collecting all Zillow listing IDs in a specific area to extracting detailed property data from each listing.

🚨 Disclaimer: Scraping websites like Zillow should be done responsibly and for educational purposes only. Always read and respect the site’s robots.txt and terms of service.

Why Scrape Zillow Data?

Zillow is one of the largest real estate platforms, offering:

  • Property listings (for sale, rent, recently sold)

  • Pricing trends (historical prices, Zestimate)

  • Neighborhood insights (schools, crime rates, walkability)

Automating data extraction helps with:
✅ Market research – Track price changes in a neighborhood.
✅ Investment analysis – Identify undervalued properties.
✅ Competitor monitoring – Compare real estate agency listings.

 

But scraping Zillow isn’t straightforward—it requires smart handling of anti-bot measures and efficient data extraction.

🔧 Tools I Used

  • Python – The language I used for the scraper

  • requests – To make HTTP calls

  • lxml or BeautifulSoup – For HTML parsing

  • pandas – For organizing and storing data

  • re – For regular expressions

  • time + random – To simulate human-like delays

zillow_home

How My Zillow Scraper Works

My scraper follows a two-step approach:

Collecting All Zillow IDs in a Target Area

Instead of scraping each listing one by one, I first extract all Zillow IDs (zpid) from search results.

Key Steps:

  1. Search for a location (e.g., “76002”) and fetch the listings page.

  2. Parse the HTML to extract zpid values (found in URLs or hidden metadata).

  3. Handle pagination to scrape all available listings (not just the first page).

Example Code Snippet (Python with BeautifulSoup):

				
					import requests
import json
from lxml import html
import math
import logging
				
			

Getting the Total House Listings

				
					class ZILLOW:
    def total_property(self, zipcode):
        try:
            headers = {
                'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8',
                'accept-language': 'en-US,en;q=0.8',
                'cache-control': 'no-cache',
                'pragma': 'no-cache',
                'priority': 'u=0, i',
                'referer': 'https://www.zillow.com/',
                'sec-ch-ua-mobile': '?0',
                'sec-ch-ua-platform': '"Windows"',
                'sec-fetch-dest': 'document',
                'sec-fetch-mode': 'navigate',
                'sec-fetch-site': 'same-origin',
                'sec-fetch-user': '?1',
                'sec-gpc': '1',
                'upgrade-insecure-requests': '1',
                'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/132.0.0.0 Safari/537.36',
            }
            response = requests.get(f'https://www.zillow.com/{zipcode}/sold/1_p/',  headers=headers)
            dom = html.fromstring(response.content)
            json_data = dom.xpath("//script[contains(@id, '__NEXT_DATA__')]/text()")[0]
            data = json.loads(json_data)
            total_count = data['props']['pageProps']['searchPageState']['cat1']['searchList']['totalResultCount']
            print(total_count)
            return total_count
        except Exception as e:
            logging.error(f"{e}")
            return None
				
			
total_result

Extracting zpid for every house listings

				
					def scraper(self, zipcode, total_count):
        pages = math.ceil(total_count/41)
        final_list = []
        for page in range(1, pages+1):
            try:
                dict1 = {}
                headers = {
                    'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8',
                    'accept-language': 'en-US,en;q=0.8',
                    'cache-control': 'no-cache',
                    'pragma': 'no-cache',
                    'priority': 'u=0, i',
                    'referer': 'https://www.zillow.com/mansfield-tx-76063/sold/20_p/?',
                    'sec-ch-ua-mobile': '?0',
                    'sec-ch-ua-platform': '"Windows"',
                    'sec-fetch-dest': 'document',
                    'sec-fetch-mode': 'navigate',
                    'sec-fetch-site': 'same-origin',
                    'sec-fetch-user': '?1',
                    'sec-gpc': '1',
                    'upgrade-insecure-requests': '1',
                    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/132.0.0.0 Safari/537.36',
                }
                response = requests.get(f'https://www.zillow.com/{zipcode}/sold/{page}_p/', headers=headers)
                dom = html.fromstring(response.content)
                json_data = dom.xpath("//script[contains(@id, '__NEXT_DATA__')]/text()")[0]
                data = json.loads(json_data)
                zpids= data['props']['pageProps']['searchPageState']['cat1']['searchResults']['listResults']['zpid']
                final_list.extend(zpids)
                if page == 25:
                    return final_list
            except Exception as e:
                logging.error(e)
                continue
        return final_list
				
			
zpid

🧼 Common Challenges

  • CAPTCHAs: Zillow may block too many requests. Try services like ScraperAPI, Zyte, or rotating proxies like Bright Data.

  • Dynamic Content: Some content is JavaScript-rendered. You can use Selenium or Playwright to render pages headlessly.

  • IP Blocks: Rotate user agents and IPs using libraries like fake_useragent.

📊 What Can You Do With This Data?

  • Analyze real estate trends in your city

  • Compare neighborhoods

  • Find underpriced properties

  • Train a house price prediction model using scikit-learn

  • Build a mini Zillow clone

✨ Final Thoughts

Web scraping gives you the superpower to gather structured data from websites like Zillow—but with great power comes great responsibility. Always follow ethical scraping practices and stay within legal bounds.

Want to dive deeper or need help setting up your own scraper? Drop a comment or connect with me on LinkedIn.

📥 Get the Code

I’ll be uploading the full script to GitHub soon. Until then, subscribe to my blog ScrapeWithMe.com for updates, tutorials, and exclusive tips!

Leave a Comment